A Decentralized Optimization Algorithm for Multi-Agent Job Shop Scheduling with Private Information

Author:

Zhou Xinmin12,Rao Wenhao12ORCID,Liu Yaqiong12ORCID,Sun Shudong12

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. Key Laboratory of Industrial Engineering and Intelligent Manufacturing, Ministry of Industry and Information Technology, Xi’an 710072, China

Abstract

The optimization of job shop scheduling is pivotal for improving overall production efficiency within a workshop. In demand-driven personalized production modes, achieving a balance between workshop resources and the diverse demands of customers presents a challenge in scheduling. Additionally, considering the self-interested behaviors of agents, this study focuses on tackling the problem of multi-agent job shop scheduling with private information. Multiple consumer agents and one job shop agent are considered, all of which are self-interested and have private information. To address this problem, a two-stage decentralized algorithm rooted in the genetic algorithm is developed to achieve a consensus schedule. The algorithm allows agents to evolve independently and concurrently, aiming to satisfy individual requirements. To prevent becoming trapped in a local optimum, the search space is broadened through crossover between agents and agent-based block insertion. Non-dominated sorting and grey relational analysis are applied to generate the final solution with high social welfare. The proposed algorithm is compared using a centralized approach and two state-of-the-art decentralized approaches in computational experiments involving 734 problem instances. The results validate that the proposed algorithm generates non-dominated solutions with strong convergence and uniformity. Moreover, the final solution produced by the developed algorithm outperforms those of the decentralized approaches. These advantages are more pronounced in larger-scale problem instances with more agents.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3