A research survey: review of AI solution strategies of job shop scheduling problem
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Link
http://link.springer.com/content/pdf/10.1007/s10845-013-0837-8.pdf
Reference108 articles.
1. Akyol, D. E., & Bayhan, G. M. (2007). A review on evolution of production scheduling with neural networks. Computers and Industrial Engineering, 53, 95–122.
2. Asadzadeh, L., & Zamanifar, K. (2010). An agent-based parallel approach for the job shop scheduling problem with genetic algorithms. Mathematical and Computer Modelling, 52, 1957–1965.
3. Aydın, M. E., & Oztemel, E. (2000). Dynamic job-shop scheduling using reinforcement learning agents. Robotics and Autonomous Systems, 33, 169–178.
4. Aydın, E., & Fogarty, T. C. (2004). A simulated annealing algorithm for multi-agent systems: A job shop scheduling application. Journal of Intelligent Manufacturing, 15, 805–814.
5. Bierwirth, C., & Mattfeld, D. C. (1999). Production scheduling and rescheduling with genetic algorithms. Evolutionary Computation, 7(1), 1–17.
Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dynamic flexible scheduling with transportation constraints by multi-agent reinforcement learning;Engineering Applications of Artificial Intelligence;2024-08
2. AI’s effect on innovation capacity in the context of industry 5.0: a scoping review;Artificial Intelligence Review;2024-07-26
3. A hybrid evolution strategies-simulated annealing algorithm for job shop scheduling problems;Engineering Applications of Artificial Intelligence;2024-07
4. Multi-Robot Task Allocation Under Uncertainty Via Hindsight Optimization;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13
5. A Decentralized Optimization Algorithm for Multi-Agent Job Shop Scheduling with Private Information;Mathematics;2024-03-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3