Time Series Prediction Based on Multi-Scale Feature Extraction

Author:

Zhang Ruixue1,Hao Yongtao1

Affiliation:

1. CAD Research Center, Tongji University, Shanghai 200092, China

Abstract

Time series data are prevalent in the real world, particularly playing a crucial role in key domains such as meteorology, electricity, and finance. Comprising observations at historical time points, these data, when subjected to in-depth analysis and modeling, enable researchers to predict future trends and patterns, providing support for decision making. In current research, especially in the analysis of long time series, effectively extracting and integrating long-term dependencies with short-term features remains a significant challenge. Long-term dependencies refer to the correlation between data points spaced far apart in a time series, while short-term features focus on more recent changes. Understanding and combining these two features correctly are crucial for constructing accurate and reliable predictive models. To efficiently extract and integrate long-term dependencies and short-term features in long time series, this paper proposes a pyramid attention structure model based on multi-scale feature extraction, referred to as the MSFformer model. Initially, a coarser-scale construction module is designed to obtain coarse-grained information. A pyramid data structure is constructed through feature convolution, with the bottom layer representing the original data and each subsequent layer containing feature information extracted across different time step lengths. As a result, nodes higher up in the pyramid integrate information from more time points, such as every Monday or the beginning of each month, while nodes lower down retain their individual information. Additionally, a Skip-PAM is introduced, where a node only calculates attention with its neighboring nodes, parent node, and child nodes, effectively reducing the model’s time complexity to some extent. Notably, the child nodes refer to nodes selected from the next layer by skipping specific time steps. In this study, we not only propose an innovative time series prediction model but also validate the effectiveness of these methods through a series of comprehensive experiments. To comprehensively evaluate the performance of the designed model, we conducted comparative experiments with baseline models, ablation experiments, and hyperparameter studies. The experimental results demonstrate that the MSFformer model improves by 35.87% and 42.6% on the MAE and MSE indicators, respectively, compared to traditional Transformer models. These results highlight the outstanding performance of our proposed deep learning model in handling complex time series data, particularly in capturing long-term dependencies and integrating short-term features.

Publisher

MDPI AG

Reference32 articles.

1. Bao, W., Yue, J., and Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE, 12.

2. Chase, C.W. (2013). Demand-Driven Forecasting: A Structured Approach to Forecasting, John Wiley & Sons.

3. Using artificial intelligence to improve real-time decision-making for high-impact weather;McGovern;Bull. Am. Meteorol. Soc.,2017

4. Hyndman, R.J., and Athanasopoulos, G. (2018). Forecasting: Principles and Practice, OTexts.

5. Tran, T.H., Nguyen, L.M., Yeo, K., Nguyen, N., Phan, D., Vaculin, R., and Kalagnanam, J. (2023). An End-to-End Time Series Model for Simultaneous Imputation and Forecast. arXiv.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electric Field Level Prediction in a Nuclear Power Plant's Main Control Room Using CNN Model;The Journal of Korean Institute of Electromagnetic Engineering and Science;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3