High-Efficiency and High-Precision Ship Detection Algorithm Based on Improved YOLOv8n

Author:

Lan Kun1ORCID,Jiang Xiaoliang1,Ding Xiaokang1,Lin Huan1,Chan Sixian2

Affiliation:

1. College of Mechanical Engineering, Quzhou University, Quzhou 324000, China

2. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

With the development of the intelligent vision industry, ship detection and identification technology has gradually become a research hotspot in the field of marine insurance and port logistics. However, due to the interference of rain, haze, waves, light, and other bad weather, the robustness and effectiveness of existing detection algorithms remain a continuous challenge. For this reason, an improved YOLOv8n algorithm is proposed for the detection of ship targets under unforeseen environmental conditions. In the proposed method, the efficient multi-scale attention module (C2f_EMAM) is introduced to integrate the context information of different scales so that the convolutional neural network can generate better pixel-level attention to high-level feature maps. In addition, a fully-concatenate bi-directional feature pyramid network (Concatenate_FBiFPN) is adopted to replace the simple superposition/addition of feature map, which can better solve the problem of feature propagation and information flow in target detection. An improved spatial pyramid pooling fast structure (SPPF2+1) is also designed to emphasize low-level pooling features and reduce the pooling depth to accommodate the information characteristics of the ship. A comparison experiment was conducted between other mainstream methods and our proposed algorithm. Results showed that our proposed algorithm outperformed other models by achieving 99.4% of accuracy, 98.2% of precision, 98.5% of recall, 99.1% of mAP@.5, and 85.4% of mAP@.5:.95 on the SeaShips dataset.

Funder

National Natural Science Foundation of China

Zhejiang Basic Public Welfare Research Project

Science and Technology Major Projects of Quzhou

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3