Feasibility of Stress Wave-Based Debond Defect Detection for RCFSTs Considering the Influence of Randomly Distributed Circular Aggregates with Mesoscale Homogenization Methodology

Author:

Wang Jiang1,Xu Bin12ORCID,Liu Qian1,Guan Ruiqi12,Ma Xiaoguang34

Affiliation:

1. College of Civil Engineering, Huaqiao University, Xiamen 361021, China

2. Key Laboratory for Intelligent Infrastructures and Monitoring of Fujian Province, Huaqiao University, Xiamen 361021, China

3. Foshan Graduate School, Northeastern University, Foshan 528311, China

4. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China

Abstract

In order to efficiently investigate the effect of the mesoscale heterogeneity of a concrete core and the randomness of circular coarse aggregate distribution on the stress wave propagation procedure and the response of PZT sensors in traditional coupling mesoscale finite element models (CMFEMs), firstly, a mesoscale homogenization approach is introduced to establish coupling homogenization finite element models (CHFEMs) with circular coarse aggregates. CHFEMs of rectangular concrete-filled steel tube (RCFST) members include a surface-mounted piezoelectric lead zirconate titanate (PZT) actuator, PZT sensors at different measurement distances, a concrete core with mesoscale homogeneity. Secondly, the computation efficiency and accuracy of the proposed CHFEMs and the size effect of representative area elements (RAEs) on the stress wave field simulation results are investigated. The stress wave field simulation results indicate that the size of an RAE limitedly affects the stress wave fields. Thirdly, the responses of PZT sensors at different measurement distances of the CHFEMs under both sinusoidal and modulated signals are studied and compared with those of the corresponding CMFEMs. Finally, the effect of the mesoscale heterogeneity of a concrete core and the randomness of circular coarse aggregate distribution on the responses of PZT sensors in the time domain of the CHFEMs with and without debond defects is further investigated. The results show that the mesoscale heterogeneity of a concrete core and randomness of circular coarse aggregate distribution only have a certain influence on the response of PZT sensors that are close to the PZT actuator. Instead, the interface debond defects dominantly affect the response of each PZT sensor regardless of the measurement distance. This finding supports the feasibility of stress wave-based debond detection for RCFSTs where the concrete core is a heterogeneous material.

Funder

National Natural Science Foundation of China

Scientific Research Funds of Huaqiao University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3