Attenuation characteristics of concrete using smart aggregate transducers: Experiments and numerical simulations of P-wave propagation

Author:

Sun Xiaohui1ORCID,Fan Shuli1ORCID,Liu Chunguang1

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning, China

Abstract

Concrete is a highly heterogeneous construction material. Waves that propagate through concrete face significant reflection, scattering, and attenuation issues. Understanding the behavior of waves as they propagate through concrete and arrive at a sensor has generated much attention, especially for developing real-world field applications. In this study, a predictive model of attenuated P-wave propagation using Rayleigh damping is presented. The method used frequency excitations ranging from 20 to 200 kHz and smart aggregates (SAs) were embedded in a concrete specimen to excite and receive P-waves. Moreover, 10 distances were marked opposite the exciter at two propagation paths. In the simulations and experiments, signal processing methods were utilized to extract the first arrival packet for calculating amplitude attenuation. The P-wave damping coefficient was modeled using the multi-physical finite element method, and the results of the predictive model were compared with the experimental results. A discussion on the utilization of frequency-dependent attenuation coefficients was conducted to explore potential P-wave attenuation factors and their respective contributions to the overall attenuation. Numerical studies have demonstrated a strong correlation with the experiments when an appropriate level of material damping coefficient was considered. By enhancing the overall comprehension of the P-wave damping coefficient and attenuation characteristics within concrete, damage detection techniques based on P-waves can be improved.

Funder

National Natural Science Foundation of China

the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3