Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau

Author:

Fandé Morto Baiém,Ponte Lira CristinaORCID,Penha-Lopes Gil

Abstract

The increased exposure to coastal flooding in low-lying coastal areas is one of the consequences of sea-level rise (SLR) induced by climate changes. The coastal zone of Guinea-Bissau contains significant areas of low elevation and is home to most of the population and economic activity, making it already vulnerable to coastal flooding, especially during spring tides and storm surges (SS). Coastal flooding will tend to intensify with the expected SLR in the coming decades. This study aimed at quantifying and mapping the area exposed to the coastal flooding hazard using SLR scenarios by the years 2041, 2083, and 2100. The study analyzes and discusses the application of a the simple “bathtub” model coupled with a high-precision global digital elevation models (TanDEM-X DEM) to areas where no other data are available. Therefore, three coastal hazards hot-spots of Guinea-Bissau: Bissau, Bubaque, and Suzana, were used as case study. At each site, the area potentially exposed to coastal flooding was evaluated in a geographic information systems (GIS) environment, by estimating the Total Water Levels for each SLR scenario. For all areas, land exposed to coastal flooding hazard increases significantly and progressively with increasing SLR scenarios. Bissau and Suzana, where housing, infrastructure, and agricultural land are low-lying, presented the greatest flood exposure, while Bubaque, where housing and infrastructure are located in relatively high-lying land and rain-fed agriculture is practiced, present lesser flood exposure. The methodology presented is simple to use but powerful in identifying potentially vulnerable places to coastal flooding hazard, and its results can aid low developed countries to assess their exposure to coastal risks, thus supporting risk awareness and mitigation measures.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3