Machine-Learning Approach for Automatic Detection of Wild Beluga Whales from Hand-Held Camera Pictures

Author:

Araújo Voncarlos M.ORCID,Shukla Ankita,Chion Clément,Gambs Sébastien,Michaud Robert

Abstract

A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert’s workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales (Delphinapterus leucas) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset’s annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall.

Funder

Réseau Québec Maritime (RQM) - Programme Odyssée

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3