Experimental Study on the Relationship between Time-Varying Uplift Displacement and Grout Diffusion in Sand

Author:

Hu Huan-Xiao12,Cao Wei1,Deng Chao34ORCID,Lu Yu-Fan1

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha 410083, China

3. National Demonstration Center for Experimental Civil Engineering Education, Hunan City University, Yiyang 413002, China

4. Hunan Engineering Research Center of Structural Safety and Disaster Prevention for Urban Underground Infrastructure, Hunan City University, Yiyang 413002, China

Abstract

Traditional model tests for soil and rock materials face challenges in observing the slurry diffusion within the soil mass, hindering the understanding of the relationship between grouting-induced ground deformation and grout diffusion. This study conducts grouting diffusion model tests using a self-developed experimental setup on both ordinary and transparent sand. We investigate cement slurry diffusion patterns, distribution characteristics, and temporal variations in ground uplift displacement during the grouting process. By leveraging a visualization grouting model and non-intrusive displacement measurements, we directly observe and verify the changes in cement slurry diffusion and ground displacement in transparent sand. The results indicate the following: during non-steady grouting in sand, slurry diffusion progresses from low-pressure infiltration to medium-pressure compaction, culminating in high-pressure fracturing; ground uplift displacement curves exhibit a consistent “step-like” increase with grouting time, featuring accelerated growth after each step; and visualization tests reveal a strong correlation between grouting pressure, slurry diffusion, and corresponding uplift displacement. Distinct features in the grouting pressure plot align with the acceleration phases of the displacement; at a water–cement ratio (w/c) of 0.8, the stratum’s vertical deformation shows a symmetric “higher in the middle, lower on the sides” distribution. As the burial depth decreases, the stratum’s uplift displacement tends to flatten horizontally, especially at w/c = 0.8 and 1.2.

Funder

National Natural Science Foundation of China

Scientific Research Project of Hunan Provincial Department of Education-Outstanding Youth Project

Yiyang City Philosophy and Social Science Project-Youth Key Project

Hunan City University Students’ Innovative Training Program Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3