A Machine Learning Approach to Predict Fluid Viscosity Based on Droplet Dynamics Features

Author:

Qin Zhipeng1,Wang Fulei1,Tang Shengchang1,Liang Shaohao1

Affiliation:

1. School of Mechanical Engineering, Guangxi University, Nanning 530004, China

Abstract

In recent years, machine learning has made significant progress in the field of micro-fluids, and viscosity prediction has become one of the hotspots of research. Due to the specificity of the application direction, the input datasets required for machine learning models are diverse, which limits the generalisation ability of the models. This paper starts by analysing the most obvious kinetic feature induced by viscosity during flow—the variation in droplet neck contraction with time (hmin/R∼τ). The kinetic processes of aqueous glycerol solutions of different viscosities when dropped in air were investigated by high-speed camera experiments, and the kinetic characteristics of the contraction of the liquid neck during droplet falling were extracted, using the Ohnesorge number (Oh=μ/(ρRσ)1/2) to represent the change in viscosity. Subsequently, the liquid neck contraction data were used as the original dataset, and three models, namely, random forest, multiple linear regression, and neural network, were used for training. The final results showed superior results for all three models, with the multivariate linear regression model having the best predictive ability with a correlation coefficient R2 of 0.98.

Funder

National Natural Science Foundation of China

Guangxi Bagui Scholars Project

Publisher

MDPI AG

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3