Enhancing Interpretability in Drill Bit Wear Analysis through Explainable Artificial Intelligence: A Grad-CAM Approach

Author:

Senjoba Lesego1ORCID,Ikeda Hajime2ORCID,Toriya Hisatoshi1ORCID,Adachi Tsuyoshi1ORCID,Kawamura Youhei3

Affiliation:

1. Graduate School of International Resource Sciences, Akita University, 1-1 Tegata Gakuenmachi, Akita 010-8502, Japan

2. Department of Systems, Control and Information Engineering, National Institute of Technology, Asahikawa College, 2-2-1-6 Syunkodai, Asahikawa 071-8142, Japan

3. Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan

Abstract

This study introduces a novel method for analyzing vibration data related to drill bit failure. Our approach combines explainable artificial intelligence (XAI) with convolutional neural networks (CNNs). Conventional signal analysis methods, such as fast Fourier transform (FFT) and wavelet transform (WT), require extensive knowledge of drilling equipment specifications, which limits their adaptability to different conditions. In contrast, our method leverages XAI algorithms applied to CNNs to directly identify fault signatures from vibration signals. The signals are transformed into their frequency components and then employed as inputs to a CNN model, which is trained to detect patterns indicative of drill bit failure. XAI algorithms are then employed to generate attention maps, highlighting regions of interest in the CNN. By scrutinizing these maps, engineers can identify critical frequencies associated with drill bit failure, providing valuable insights for maintenance and optimization. This method offers a transparent and interpretable framework for analyzing vibration data, enabling informed decision-making and proactive maintenance strategies to enhance drilling efficiency and minimize downtime. The integration of XAI with CNNs facilitates a deeper understanding of the root causes of drill bit failure and improves overall drilling performance.

Publisher

MDPI AG

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3