Advanced Signal Processing Methods for Condition Monitoring

Author:

Jaros ReneORCID,Byrtus Radek,Dohnal Jakub,Danys Lukas,Baros Jan,Koziorek Jiri,Zmij Petr,Martinek Radek

Abstract

AbstractCondition monitoring of induction motors (IM) among with the predictive maintenance concept are currently among the most promising research topics of manufacturing industry. Production efficiency is an important parameter of every manufacturing plant since it directly influences the final price of products. This research article presents a comprehensive overview of conditional monitoring techniques, along with classification techniques and advanced signal processing techniques. Compared methods are either based on measurement of electrical quantities or nonelectrical quantities that are processed by advanced signal processing techniques. This article briefly compares individual techniques and summarize results achieved by different research teams. Our own testbed is briefly introduced in the discussion section along with plans for future dataset creation. According to the comparison, Wavelet Transform (WT) along with Empirical Mode Decomposition (EMD), Principal Component Analysis (PCA) and Park’s Vector Approach (PVA) provides the most interesting results for real deployment and could be used for future experiments.

Funder

European Regional Development Fund in Research Platform focused on Industry 4.0 and Robotics in the Ostrava project

Ministry of Education of the Czech Republic

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3