Event-Triggered Time-Varying Formation Tracking Control for Multi-Agent Systems with a Switching-Directed Topology

Author:

Chen Xiaoya1,Chen Huiying1ORCID

Affiliation:

1. Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems, School of Engineering, Huzhou University, Huzhou 313000, China

Abstract

This study investigates the problem of time-varying formation tracking (TVFT) control involving event-triggered and switching topological mechanisms. Specifically, TVFT is evaluated with a consensus analysis and deduced via the use of linear matrix inequality techniques combined with Lyapunov stability theory. This strategy obtains sufficient conditions for system stability and the feedback and coupling gains. In addition, the TVFT compensational signals are presented in two cases to enhance the algorithm’s applicability. Given that ideal multi-agent systems (MASs) should be highly flexible and resilient, we propose a co-design algorithm that strikes a balance between the need for a lower communication frequency and a reduction in the state disagreements of agents. Finally, the effectiveness of the theoretical analysis is demonstrated through 3D figures and comparison tables, from which it can be concluded that the communication frequency of the MAS was clearly reduced on the basis of ensuring consensus performance via applying the algorithm proposed in this paper.

Funder

Zhejiang Provincial Public Welfare Technology Application Research Project of China

National Natural Science Foundation of China

Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3