Abstract
Phage therapy is a century-old technique employing viruses (phages) to treat bacterial infections, and in the clinic it is often used in combination with antibiotics. Antibiotics, however, interfere with critical bacterial metabolic activities that can be required by phages. Explicit testing of antibiotic antagonism of phage infection activities, though, is not a common feature of phage therapy studies. Here we use optical density-based ‘lysis-profile’ assays to assess the impact of two antibiotics, colistin and ciprofloxacin, on the bactericidal, bacteriolytic, and new-virion-production activities of three Pseudomonas aeruginosa phages. Though phages and antibiotics in combination are more potent in killing P. aeruginosa than either acting alone, colistin nevertheless substantially interferes with phage bacteriolytic and virion-production activities even at its minimum inhibitory concentration (1× MIC). Ciprofloxacin, by contrast, has little anti-phage impact at 1× or 3× MIC. We corroborate these results with more traditional measures, particularly colony-forming units, plaque-forming units, and one-step growth experiments. Our results suggest that ciprofloxacin could be useful as a concurrent phage therapy co-treatment especially when phage replication is required for treatment success. Lysis-profile assays also appear to be useful, fast, and high-throughput means of assessing antibiotic antagonism of phage infection activities.
Funder
Cystic Fibrosis Foundation
Gordon and Betty Moore Foundation
United States Public Health Service
The Ohio State University President’s Postdoctoral Scholars Program
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献