Warming alters life-history traits and competition in a phage community

Author:

Greenrod Samuel T. E.1ORCID,Cazares Daniel1,Johnson Serena12,Hector Tobias E.1,Stevens Emily J.1,MacLean R. Craig1,King Kayla C.123ORCID

Affiliation:

1. Department of Biology, University of Oxford, Oxford, United Kingdom

2. Department of Zoology, University of British Columbia, Vancouver, Canada

3. Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada

Abstract

ABSTRACT Host-parasite interactions are highly susceptible to changes in temperature due to mismatches in species thermal responses. In nature, parasites often exist in communities, and responses to temperature are expected to vary between host-parasite pairs. Temperature change thus has consequences for both host-parasite dynamics and parasite-parasite interactions. Here, we investigate the impact of warming (37°C, 40°C, and 42°C) on parasite life-history traits and competition using the opportunistic bacterial pathogen Pseudomonas aeruginosa (host) and a panel of three genetically diverse lytic bacteriophages (parasites). We show that phages vary in their responses to temperature. While 37°C and 40°C did not have a major effect on phage infectivity, infection by two phages was restricted at 42°C. This outcome was attributed to disruption of different phage life-history traits including host attachment and replication inside hosts. Furthermore, we show that temperature mediates competition between phages by altering their competitiveness. These results highlight phage trait variation across thermal regimes with the potential to drive community dynamics. Our results have important implications for eukaryotic viromes and the design of phage cocktail therapies. IMPORTANCE Mammalian hosts often elevate their body temperatures through fevers to restrict the growth of bacterial infections. However, the extent to which fever temperatures affect the communities of phages with the ability to parasitize those bacteria remains unclear. In this study, we investigate the impact of warming across a fever temperature range (37°C, 40°C, and 42°C) on phage life-history traits and competition using a bacterium (host) and bacteriophage (parasite) system. We show that phages vary in their responses to temperature due to disruption of different phage life-history traits. Furthermore, we show that temperature can alter phage competitiveness and shape phage-phage competition outcomes. These results suggest that fever temperatures have the potential to restrict phage infectivity and drive phage community dynamics. We discuss implications for the role of temperature in shaping host-parasite interactions more widely.

Funder

UKRI | Biotechnology and Biological Sciences Research Council

UKRI | Natural Environment Research Council

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3