Abstract
Roads are important mode of transportation, which are very convenient for people’s daily work and life. However, it is challenging to accuratly extract road information from a high-resolution remote sensing image. This paper presents a road extraction method for remote sensing images with a complement UNet (C-UNet). C-UNet contains four modules. Firstly, the standard UNet is used to roughly extract road information from remote sensing images, getting the first segmentation result; secondly, a fixed threshold is utilized to erase partial extracted information; thirdly, a multi-scale dense dilated convolution UNet (MD-UNet) is introduced to discover the complement road areas in the erased masks, obtaining the second segmentation result; and, finally, we fuse the extraction results of the first and the third modules, getting the final segmentation results. Experimental results on the Massachusetts Road dataset indicate that our C-UNet gets the higher results than the state-of-the-art methods, demonstrating its effectiveness.
Funder
National Natural Science Foundation of China
Scientific and Technology Program Municipal Educa361 tion Commission
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献