Optimizing the Hydrothermal Carbonization of Sewage Sludge—Response Surface Methodology and the Effect of Volatile Solids

Author:

Blach Tobias,Engelhart MarkusORCID

Abstract

This study focuses on identifying the optimum conditions of sewage sludge hydrothermal carbonization by Box–Behnken Design and on the effects of volatile solids on heating value and on process water load. To get insight into the solid and process water characteristics, we applied the Box–Behnken Design on the hydrothermal reaction temperature (190, 220, 250 °C), reaction time (0.5, 2.25, 4 h) and pH (3.9, 5, 6.1). The response surface of the liquid phase revealed decreasing dissolved organic carbon (DOC) concentrations with increasing temperature from 9446 mg/L (190 °C) to 7402 mg/L (250 °C) at 4 h reaction time. For the same hydrothermal conditions, NH4-N concentration increased from 754 to 1230 mg/L. Reaction temperature was identified as the most important process parameter, whereas reaction time and pH had only minor effects. Moreover, linear coefficients of the models were more decisive than the interrelation and quadratic coefficients. Volatile solids (VS) of the feedstock were found to significantly influence both the load of the process water and the change in heating value of the hydrochars. Process water load increased steadily with higher VS. The heating value only increased with more than around 65–80% VS in feedstock.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3