A Novel Analog Circuit Soft Fault Diagnosis Method Based on Convolutional Neural Network and Backward Difference

Author:

Zhang Chenggong,Zha Daren,Wang Lei,Mu Nan

Abstract

This paper develops a novel soft fault diagnosis approach for analog circuits. The proposed method employs the backward difference strategy to process the data, and a novel variant of convolutional neural network, i.e., convolutional neural network with global average pooling (CNN-GAP) is taken for feature extraction and fault classification. Specifically, the measured raw domain response signals are firstly processed by the backward difference strategy and the first-order and the second-order backward difference sequences are generated, which contain the signal variation and the rate of variation characteristics. Then, based on the one-dimensional convolutional neural network, the CNN-GAP is developed by introducing the global average pooling technical. Since global average pooling calculates each input vector’s mean value, the designed CNN-GAP could deal with different lengths of input signals and be applied to diagnose different circuits. Additionally, the first-order and the second-order backward difference sequences along with the raw domain response signals are directly fed into the CNN-GAP, in which the convolutional layers automatically extract and fuse multi-scale features. Finally, fault classification is performed by the fully connected layer of the CNN-GAP. The effectiveness of our proposal is verified by two benchmark circuits under symmetric and asymmetric fault conditions. Experimental results prove that the proposed method outperforms the existing methods in terms of diagnosis accuracy and reliability.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3