A Biallelic Truncating Variant in the TPR Domain of GEMIN5 Associated with Intellectual Disability and Cerebral Atrophy

Author:

Ibrahim Nazia12ORCID,Naz Shagufta1ORCID,Mattioli Francesca3ORCID,Guex Nicolas4ORCID,Sharif Saima1ORCID,Iqbal Afia1,Ansar Muhammad56,Reymond Alexandre3

Affiliation:

1. Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan

2. Department of Zoology, University of Sialkot, Sialkot 51040, Pakistan

3. Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland

4. Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland

5. Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Aisle des Aveugles, 1004 Lausanne, Switzerland

6. Advanced Molecular Genetics and Genomics Disease Research and Treatment Centre, Dow University of Health Sciences, Karachi 74200, Pakistan

Abstract

GEMIN5 is a multifunctional RNA-binding protein required for the assembly of survival motor neurons. Several bi-allelic truncating and missense variants in this gene are reported to cause a neurodevelopmental disorder characterized by cerebellar atrophy, intellectual disability (ID), and motor dysfunction. Whole exome sequencing of a Pakistani consanguineous family with three brothers affected by ID, cerebral atrophy, mobility, and speech impairment revealed a novel homozygous 3bp-deletion NM_015465.5:c.3162_3164del that leads to the loss of NM_015465.5 (NP_056280.2):p. (Asp1054_Ala1055delinsGlu) amino acid in one of the α-helixes of the tetratricopeptide repeats of GEMIN5. In silico 3D representations of the GEMIN5 dimerization domain show that this variant likely affects the orientation of the downstream sidechains out of the helix axis, which would affect the packing with neighboring helices. The phenotype of all affected siblings overlaps well with previously reported patients, suggesting that NM_015465.5: c.3162_3164del (NP_056280.2):p. (Asp1054_Ala1055delinsGlu) is a novel GEMIN5 pathogenic variant. Overall, our data expands the molecular and clinical phenotype of the recently described neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) syndrome.

Funder

Swiss National Science Foundation

Jérôme Lejeune Foundation

Higher Education Commission Pakistan

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3