Identification and Characterization of Glycine- and Arginine-Rich Motifs in Proteins by a Novel GAR Motif Finder Program

Author:

Wang Yi-Chun12,Huang Shang-Hsuan1,Chang Chien-Ping1,Li Chuan12ORCID

Affiliation:

1. Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan

2. Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan

Abstract

Glycine- and arginine-rich (GAR) motifs with different combinations of RG/RGG repeats are present in many proteins. The nucleolar rRNA 2′-O-methyltransferase fibrillarin (FBL) contains a conserved long N-terminal GAR domain with more than 10 RGG plus RG repeats separated by specific amino acids, mostly phenylanalines. We developed a GAR motif finder (GMF) program based on the features of the GAR domain of FBL. The G(0,3)-X(0,1)-R-G(1,2)-X(0,5)-G(0,2)-X(0,1)-R-G(1,2) pattern allows the accommodation of extra-long GAR motifs with continuous RG/RGG interrupted by polyglycine or other amino acids. The program has a graphic interface and can easily output the results as .csv and .txt files. We used GMF to show the characteristics of the long GAR domains in FBL and two other nucleolar proteins, nucleolin and GAR1. GMF analyses can illustrate the similarities and also differences between the long GAR domains in the three nucleolar proteins and motifs in other typical RG/RGG-repeat-containing proteins, specifically the FET family members FUS, EWS, and TAF15 in position, motif length, RG/RGG number, and amino acid composition. We also used GMF to analyze the human proteome and focused on the ones with at least 10 RGG plus RG repeats. We showed the classification of the long GAR motifs and their putative correlation with protein/RNA interactions and liquid–liquid phase separation. The GMF algorithm can facilitate further systematic analyses of the GAR motifs in proteins and proteomes.

Funder

Ministry of Science and Technology, Taiwan, ROC

Chung Shan Medical University

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3