Obesity Contributes to Transformation of Myometrial Stem-Cell Niche to Leiomyoma via Inducing Oxidative Stress, DNA Damage, Proliferation, and Extracellular Matrix Deposition

Author:

Afrin Sadia1ORCID,Kirschen Gregory W.1,Borahay Mostafa A.1ORCID

Affiliation:

1. Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, MD 21287, USA

Abstract

Leiomyomas (fibroids) are monoclonal tumors in which myometrial stem cells (MSCs) turn tumorigenic after mutation, abnormal methylation, or aberrant signaling. Several factors contribute to metabolic dysfunction in obesity, including abnormal cellular proliferation, oxidative stress, and DNA damage. The present study aims to determine how adipocytes and adipocyte-secreted factors affect changes in MSCs in a manner that promotes the growth of uterine leiomyomas. Myometrial stem cells were isolated from the uteri of patients by fluorescence-activated cell sorting (FACS) using CD44/Stro1 antibodies. Enzyme-linked immunosorbent assay (ELISA), Western blot, and immunocytochemistry assays were performed on human adipocytes (SW872) co-cultured with MSCs and treated with leptin or adiponectin to examine the effects of proliferation, extracellular matrix (ECM) deposition, oxidative damage, and DNA damage. Co-culture with SW872 increased MSC proliferation compared to MSC culture alone, according to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) results. The expressions of PCNA and COL1A increased significantly with SW872 co-culture. In addition, the expression of these markers was increased after leptin treatment and decreased after adiponectin treatment in MSCs. The Wnt/β-catenin and TGF-β/SMAD signaling pathways promote proliferation and ECM deposition in uterine leiomyomas. The expression of Wnt4, β-catenin, TGFβ3, and pSMAD2/3 of MSCs was increased when co-cultured with adipocytes. We found that the co-culture of MSCs with adipocytes resulted in increased NOX4 expression, reactive oxygen species production, and γ-H2AX expression. Leptin acts by binding to its receptor (LEP-R), leading to signal transduction, resulting in the transcription of genes involved in cellular proliferation, angiogenesis, and glycolysis. In MSCs, co-culture with adipocytes increased the expression of LEP-R, pSTAT3/STAT3, and pERK1/2/ERK/12. Based on the above results, we suggest that obesity may mediate MSC initiation of tumorigenesis, resulting in leiomyomas.

Funder

NIH

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference65 articles.

1. Zimmermann, A., Bernuit, D., Gerlinger, C., Schaefers, M., and Geppert, K. (2012). Prevalence, symptoms and management of uterine fibroids: An international internet-based survey of 21,746 women. BMC Women’s Health, 12.

2. Relationship between obesity and uterine leiomyomata;Shikora;Nutrition,1991

3. Association between obesity and the risk of uterine fibroids: A systematic review and meta-analysis;Qin;J. Epidemiol. Community Health,2021

4. Cardiometabolic Risk and Cardiovascular Disease in Young Women with Uterine Fibroids;Brewster;Cureus,2022

5. BMI and uterine size: Is there any relationship?;Dandolu;Int. J. Gynecol. Pathol.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3