PromGER: Promoter Prediction Based on Graph Embedding and Ensemble Learning for Eukaryotic Sequence

Author:

Wang Yan12ORCID,Tai Shiwen1ORCID,Zhang Shuangquan3,Sheng Nan1,Xie Xuping1

Affiliation:

1. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China

2. School of Artificial Intelligence, Jilin University, Changchun 130012, China

3. School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Promoters are DNA non-coding regions around the transcription start site and are responsible for regulating the gene transcription process. Due to their key role in gene function and transcriptional activity, the prediction of promoter sequences and their core elements accurately is a crucial research area in bioinformatics. At present, models based on machine learning and deep learning have been developed for promoter prediction. However, these models cannot mine the deeper biological information of promoter sequences and consider the complex relationship among promoter sequences. In this work, we propose a novel prediction model called PromGER to predict eukaryotic promoter sequences. For a promoter sequence, firstly, PromGER utilizes four types of feature-encoding methods to extract local information within promoter sequences. Secondly, according to the potential relationships among promoter sequences, the whole promoter sequences are constructed as a graph. Furthermore, three different scales of graph-embedding methods are applied for obtaining the global feature information more comprehensively in the graph. Finally, combining local features with global features of sequences, PromGER analyzes and predicts promoter sequences through a tree-based ensemble-learning framework. Compared with seven existing methods, PromGER improved the average specificity of 13%, accuracy of 10%, Matthew’s correlation coefficient of 16%, precision of 4%, F1 score of 6%, and AUC of 9%. Specifically, this study interpreted the PromGER by the t-distributed stochastic neighbor embedding (t-SNE) method and SHAPley Additive exPlanations (SHAP) value analysis, which demonstrates the interpretability of the model.

Funder

the National Natural Science Foundation of China

the Development Project of Jilin Province of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3