Assessing Outlier Probabilities in Transcriptomics Data When Evaluating a Classifier

Author:

Kircher Magdalena1,Säurich Josefin1,Selle Michael1,Jung Klaus1ORCID

Affiliation:

1. Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany

Abstract

Outliers in the training or test set used to fit and evaluate a classifier on transcriptomics data can considerably change the estimated performance of the model. Hence, an either too weak or a too optimistic accuracy is then reported and the estimated model performance cannot be reproduced on independent data. It is then also doubtful whether a classifier qualifies for clinical usage. We estimate classifier performances in simulated gene expression data with artificial outliers and in two real-world datasets. As a new approach, we use two outlier detection methods within a bootstrap procedure to estimate the outlier probability for each sample and evaluate classifiers before and after outlier removal by means of cross-validation. We found that the removal of outliers changed the classification performance notably. For the most part, removing outliers improved the classification results. Taking into account the fact that there are various, sometimes unclear reasons for a sample to be an outlier, we strongly advocate to always report the performance of a transcriptomics classifier with and without outliers in training and test data. This provides a more diverse picture of a classifier’s performance and prevents reporting models that later turn out to be not applicable for clinical diagnoses.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3