Affiliation:
1. Stanford University, Stanford, CA
Abstract
The morbidity rate of cancer victims varies greatly for similar patients who receive similar treatments. It is hypothesized that this variation can be explained by the genetic heterogeneity of the disease. DNA Microarrays, which can simultaneously measure the expression level of thousands of different genes, have been successfully used to identify such genetic differences. However, microarray data typically has a large number of features and relatively few observations, meaning that conventional machine learning tools can fail when applied to such data. We describe a novel procedure called "nearest shrunken centroids" that has successfully detected clinically relevant genetic differences in cancer patients. This procedure has the potential to become a powerful tool for diagnosing and treating cancer.
Publisher
Association for Computing Machinery (ACM)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献