Properties of INDETERMINATE DOMAIN Proteins from Physcomitrium patens: DNA-Binding, Interaction with GRAS Proteins, and Transcriptional Activity

Author:

Khan Saiful Islam1,Yamada Ren2,Shiroma Ryoichi3,Abe Tatsuki3,Kozaki Akiko123ORCID

Affiliation:

1. Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan

2. Department of Biological Science, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan

3. Course of Bioscience, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan

Abstract

INDETERMINATE DOMAIN (IDD) proteins are plant-specific transcription factors that interact with GRAS proteins, such as DELLA and SHORT ROOT (SHR), to regulate target genes. The combination of IDD and DELLA proteins regulates genes involved in gibberellic acid (GA) synthesis and GA signaling, whereas the combination of IDD with the complex of SHR and SCARECROW, another GRAS protein, regulates genes involved in root tissue formation. Previous bioinformatic research identified seven IDDs, two DELLA, and two SHR genes in Physcomitrium patens, a model organism for non-vascular plants (bryophytes), which lack a GA signaling pathway and roots. In this study, DNA-binding properties and protein–protein interaction of IDDs from P. patens (PpIDD) were analyzed. Our results showed that the DNA-binding properties of PpIDDs were largely conserved between moss and seed plants. Four PpIDDs showed interaction with Arabidopsis DELLA (AtDELLA) proteins but not with PpDELLAs, and one PpIDD showed interaction with PpSHR but not with AtSHR. Moreover, AtIDD10 (JACKDAW) interacted with PpSHR but not with PpDELLAs. Our results indicate that DELLA proteins have modified their structure to interact with IDD proteins during evolution from moss lineage to seed plants, whereas the interaction of IDD and SHR was already present in moss lineage.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3