MOSSES AS MODEL SYSTEMS FOR THE STUDY OF METABOLISM AND DEVELOPMENT

Author:

Cove David12,Bezanilla Magdalena3,Harries Phillip4,Quatrano Ralph2

Affiliation:

1. Center for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom;

2. Department of Biology, Washington University, St. Louis, Missouri 63130-4899

3. Department of Biology, University of Massachusetts, Amherst, Massachusetts 01002-9297

4. Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401

Abstract

The haploid gametophyte stage of the moss life cycle is amenable to genetic and biochemical studies. Many species can be cultured on simple defined media, where growth is rapid, making them ideal material for metabolic studies. Developmental responses to hormones and to environmental inputs can be studied both at the level of individual cells and in multicellular tissues. The protonemal stage of gametophyte development comprises cell filaments that extend by the serial division of their apical cells, allowing the investigation of the generation and modification of cell polarity and the role of the cytoskeleton in these processes. Molecular techniques including gene inactivation by targeted gene replacement or by RNA interference, together with the nearly completed sequencing of the Physcomitrella patens genome, open the way for detailed study of the functions of genes involved in both development and metabolism.

Publisher

Annual Reviews

Subject

Cell Biology,Plant Science,Molecular Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3