A Genome-Wide View of the Transcriptome Dynamics of Fresh-Cut Potato Tubers

Author:

Wang Li,Wang Wanxing,Shan Jianwei,Li Chengchen,Suo Haicui,Liu Jitao,An Kang,Li Xiaobo,Xiong Xingyao

Abstract

Fresh fruits and vegetable products are easily perishable during postharvest handling due to enzymatic browning reactions. This phenomenon has contributed to a significant loss of food. To reveal the physiological changes in fresh-cut potato tubers at the molecular level, a transcriptome analysis of potato tubers after cutting was carried out. A total of 10,872, 10,449, and 11,880 differentially expressed genes (DEGs) were identified at 4 h, 12 h and 24 h after cutting, respectively. More than 87.5% of these DEGs were classified into the categories of biological process (BP) and molecular function (MF) based on Gene Ontology (GO) analysis. There was a difference in the response to cutting at different stages after the cutting of potato tubers. The genes related to the phenol and fatty biosynthesis pathways, which are responsible for enzymatic browning and wound healing in potato tubers, were significantly enriched at 0–24 h after cutting. Most genes related to the enzymatic browning of potato tubers were up-regulated in response to cut-wounding. Plant hormone biosynthesis, signal molecular biosynthesis and transduction-related genes, such as gibberelin (GA), cytokinin (CK), ethylene (ET), auxin (IAA), jasmonic acid (JA), salicylic (SA), and Respiratory burst oxidase (Rboh) significantly changed at the early stage after cutting. In addition, the transcription factors involved in the wound response were the most abundant at the early stage after cutting. The transcription factor with the greatest response to injury was MYB, followed by AP2-EREBP, C3H and WRKY. This study revealed the physiological changes at the molecular level of fresh-cut potato tubers after cutting. This information is needed for developing a better approach to enhancing the postharvest shelf life of fresh processed potato and the breeding of potato plants that are resistant to enzymatic browning.

Funder

Special Fund Project of Introducing scientific and technological Talents of the Guangdong Academy of Agricultural Sciences

Foundation for Basic and Applied Basic Research of Guangdong Province

Guangdong Province sweet potato and potato industry technology system innovation team project

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3