Developing and Field Testing a Green Light Optimal Speed Advisory System for Buses

Author:

Chen HaoORCID,Rakha Hesham A.ORCID

Abstract

In this study, a Green Light Optimal Speed Advisory (GLOSA) system for buses (B-GLOSA) was developed. The proposed B-GLOSA system was implemented on diesel buses, and field tested to validate and quantify the potential real-world benefits. The developed system includes a simple and easy-to-calibrate fuel consumption model that computes instantaneous diesel bus fuel consumption rates. The bus fuel consumption model, a vehicle dynamics model, the traffic signal timings, and the relationship between vehicle speed and distance to the intersection are used to construct an optimization problem. A moving-horizon dynamic programming problem solved using the A-star algorithm is used to compute the energy-optimized vehicle trajectory through signalized intersections. The Virginia Smart Road test facility was used to conduct the field test on 30 participants. Each participant drove three scenarios, including a base case uninformed drive, an informed drive with signal timing information communicated to the driver, and an informed drive with the recommended speed computed by the B-GLOSA system. The field test investigated the performance of using the developed B-GLOSA system considering different impact factors, including road grades and red indication offsets, using a split-split-plot experimental design. The test results demonstrated that the proposed B-GLOSA system can produce smoother bus trajectories through signalized intersections, thus producing fuel consumption and travel time savings. Specifically, compared to the uninformed drive, the B-GLOSA system produces fuel and travel time savings of 22.1% and 6.1%, on average, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3