Abstract
The task of reconstructing 3D scenes based on visual data represents a longstanding problem in computer vision. Common reconstruction approaches rely on the use of multiple volumetric primitives to describe complex objects. Superquadrics (a class of volumetric primitives) have shown great promise due to their ability to describe various shapes with only a few parameters. Recent research has shown that deep learning methods can be used to accurately reconstruct random superquadrics from both 3D point cloud data and simple depth images. In this paper, we extended these reconstruction methods to intensity and color images. Specifically, we used a dedicated convolutional neural network (CNN) model to reconstruct a single superquadric from the given input image. We analyzed the results in a qualitative and quantitative manner, by visualizing reconstructed superquadrics as well as observing error and accuracy distributions of predictions. We showed that a CNN model designed around a simple ResNet backbone can be used to accurately reconstruct superquadrics from images containing one object, but only if one of the spatial parameters is fixed or if it can be determined from other image characteristics, e.g., shadows. Furthermore, we experimented with images of increasing complexity, for example, by adding textures, and observed that the results degraded only slightly. In addition, we show that our model outperforms the current state-of-the-art method on the studied task. Our final result is a highly accurate superquadric reconstruction model, which can also reconstruct superquadrics from real images of simple objects, without additional training.
Funder
Slovenian Research Agency
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献