Applying Machine Learning to Finger Movements Using Electromyography and Visualization in Opensim

Author:

Amezquita-Garcia JoseORCID,Bravo-Zanoguera MiguelORCID,Gonzalez-Navarro Felix F.,Lopez-Avitia RobertoORCID,Reyna M. A.

Abstract

Electromyographic signals have been used with low-degree-of-freedom prostheses, and recently with multifunctional prostheses. Currently, they are also being used as inputs in the human–computer interface that controls interaction through hand gestures. Although there is a gap between academic publications on the control of an upper-limb prosthesis developed in laboratories and its service in the natural environment, there are attempts to achieve easier control using multiple muscle signals. This work contributes to this, using a database and biomechanical simulation software, both open access, to seek simplicity in the classifiers, anticipating their implementation in microcontrollers and their execution in real time. Fifteen predefined finger movements of the hand were identified using classic classifiers such as Bayes, linear and quadratic discriminant analysis. The idealized movements of the database were modeled with Opensim for visualization. Combinations of two preprocessing methods—the forward sequential selection method and the feature normalization method—were evaluated to increase the efficiency of these classifiers. The statistical methods of cross-validation, analysis of variance (ANOVA) and Duncan were used to validate the results. Furthermore, the classifier with the best recognition result was redesigned into a new feature space using the sparse matrix algorithm to improve it, and to determine which features can be eliminated without degrading the classification. The classifiers yielded promising results—the quadratic discriminant being the best, achieving an average recognition rate for each individual considered of 96.16%, and with 78.36% for the total sample group of the eight subjects, in an independent test dataset. The study ends with the visual analysis under Opensim of the classified movements, in which the usefulness of this simulation tool is appreciated by revealing the muscular participation, which can be useful during the design of a multifunctional prosthesis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3