Abstract
Based on the droop control, voltage regulation at the secondary control is required to eliminate the deviation of the average voltage across the microgrid. Meanwhile, to prevent any of energy storage (ESs) from over-charging or over-discharging, State-of-Charge (SoC) balancing should be added in the secondary control. This paper proposes a distributed secondary control in the DC microgrid based on the multiagent system (MAS). This controller consists of voltage regulation and time-oriented SoC balancing. In voltage regulation, a PI controller adjusts the droop parameters according to the discrepancy between the average voltage and the reference voltage. In SoC balancing, controller operates in charging mode or discharging mode according to changes of the global average SoC. Being different from the conventional method, the time-oriented SoC balancing method is designed to balance charge/discharge time rather than to balance SoC directly. Thus, SoCs reach a consensus only at the last moment when all ES nodes charge or discharge completely. Furthermore, characteristics, global dynamic model, and steady-state analysis of the proposed control method are studied. Finally, MATLAB/Simulink simulations are performed to verify the effectiveness of the proposed control.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献