Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey

Author:

Al-Saadi Mudhafar1,Al-Greer Maher1ORCID,Short Michael1ORCID

Affiliation:

1. School of Computing, Engineering, and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK

Abstract

Intelligent energy management in renewable-based power distribution applications, such as microgrids, smart grids, smart buildings, and EV systems, is becoming increasingly important in the context of the transition toward the decentralization, digitalization, and decarbonization of energy networks. Arguably, many challenges can be overcome, and benefits leveraged, in this transition by the adoption of intelligent autonomous computer-based decision-making through the introduction of smart technologies, specifically artificial intelligence. Unlike other numerical or soft computing optimization methods, the control based on artificial intelligence allows the decentralized power units to collaborate in making the best decision of fulfilling the administrator’s needs, rather than only a primitive decentralization based only on the division of tasks. Among the smart approaches, reinforcement learning stands as the most relevant and successful, particularly in power distribution management applications. The reason is it does not need an accurate model for attaining an optimized solution regarding the interaction with the environment. Accordingly, there is an ongoing need to accomplish a clear, up-to-date, vision of the development level, especially with the lack of recent comprehensive detailed reviews of this vitally important research field. Therefore, this paper fulfills the need and presents a comprehensive review of the state-of-the-art successful and distinguished intelligent control strategies-based RL in optimizing the management of power flow and distribution. Wherein extensive importance is given to the classification of the literature on emerging strategies, the proposals based on RL multiagent, and the multiagent primary secondary control of managing power flow in micro and smart grids, particularly the energy storage. As a result, 126 of the most relevant, recent, and non-incremental have been reviewed and put into relevant categories. Furthermore, salient features have been identified of the major positive and negative, of each selection.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3