Remaining Useful Life Estimation for Engineered Systems Operating under Uncertainty with Causal GraphNets

Author:

Mylonas CharilaosORCID,Chatzi EleniORCID

Abstract

In this work, a novel approach, termed GNN-tCNN, is presented for the construction and training of Remaining Useful Life (RUL) models. The method exploits Graph Neural Networks (GNNs) and deals with the problem of efficiently learning from time series with non-equidistant observations, which may span multiple temporal scales. The efficacy of the method is demonstrated on a simulated stochastic degradation dataset and on a real-world accelerated life testing dataset for ball-bearings. The proposed method learns a model that describes the evolution of the system implicitly rather than at the raw observation level and is based on message-passing neural networks, which encode the irregularly sampled causal structure. The proposed approach is compared to a recurrent network with a temporal convolutional feature extractor head (LSTM-tCNN), which forms a viable alternative for the problem considered. Finally, by taking advantage of recent advances in the computation of reparametrization gradients for learning probability distributions, a simple, yet efficient, technique is employed for representing prediction uncertainty as a gamma distribution over RUL predictions.

Funder

European Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3