Farm‐wide interface fatigue loads estimation: A data‐driven approach based on accelerometers

Author:

de N Santos Francisco1ORCID,Noppe Nymfa1,Weijtjens Wout1,Devriendt Christof1

Affiliation:

1. OWI‐Lab Vrije Universiteit Brussel Brussels Belgium

Abstract

AbstractFatigue has become a major consideration factor in modern offshore wind farms as optimized design codes, and a lack of lifetime reserve has made continuous fatigue life monitoring become an operational concern. In this contribution, we discuss a data‐driven methodology for farm‐wide tower‐transition piece fatigue load estimation. We specifically debate the employment of this methodology in a real‐world farm‐wide setting and the implications of continuous monitoring. With reliable nacelle‐installed accelerometer data at all locations, along with the customary 10‐min supervisory control and data acquisition (SCADA) statistics and three strain gauge‐instrumented 'fleet‐leaders', we discuss the value of two distinct approaches: use of either fleet‐leader or population‐based data for training a physics‐guided neural network model with a built‐in conservative bias, with the latter taking precedence. In the context of continuous monitoring, we touch on the importance of data imputation, working under the assumption that if data are missing, then its fatigue loads should be modeled as under idling. With this knowledge at hand, we analyzed the errors of the trained model over a period of 9 months, with monthly accumulated errors always kept below . A particular focus was given to performance under high loads, where higher errors were found. The cause for this error was identified as being inherent to the use of 10‐min statistics, but mitigation strategies have been identified. Finally, the farm‐wide results are presented on fatigue load estimation, which allowed to identify outliers, whose behavior we correlated with the operational conditions. Finally, the continuous data‐driven, population‐based approach here presented can serve as a springboard for further lifetime‐based decision‐making.

Publisher

Wiley

Reference71 articles.

1. IRENA ed..Statistics time series international renewable energy agency. Accessed May 31 2023.https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Statistics-Time-Series

2. MiedemaR.Offshore wind energy operations & maintenance analysis. Hoge school van Amsterdam;2012.

3. Challenges in design of foundations for offshore wind turbines;Bhattacharya S;Eng Technol Ref,2014

4. Towards a Fleetwide Data-Driven Lifetime Assessment Methodology of Offshore Wind Support Structures Based on SCADA and SHM Data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3