Fabrication and Characterization of the Broccoli-like Structured CuO Thin Films Synthesized by a Facile Hydrothermal Method and Its Photoelectrochemical Water Splitting Application

Author:

Lam Nguyen Hoang,Truong Nguyen Tam Nguyen,Thuy Chau Thi Thanh,Tamboli Mohaseen S.ORCID,Tamboli Asiya M.,Jung Jinjoo,Ahn Kwang-soonORCID,Kim Chang-Duk,Jung Jae Hak

Abstract

CuO thin films with broccoli-like structure were prepared using a facile hydrothermal method to construct photocathodes for water-splitting application. The morphological, structural, and optical properties of thin films were characterized and measured using several techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and ultraviolet-visible spectroscopy (UV-Vis). The thickness, structure, and morphology of CuO thin films can be controlled by varying the precursor concentration (Cp) and reaction temperature (Tr), which are also discussed. Moreover, the electrical properties of CuO thin films were also measured in the three-electrode system. The photocurrent density of photocathodes, when synthesized by a 0.5 M solution at 150 °C for 12 h, was 0.5 mA/cm2 at −0.6 V vs. Ag/AgCl, which is 1.8 times higher than that of photocathodes synthesized in a 0.1 M solution at 100 °C with the same reaction time. In addition, increasing the reaction temperature and precursor concentration aided in the enhancement of the IPCE and APCE values, which peaked at a wavelength range of 330–400 nm.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3