Improving the photoelectrochemical water splitting performance of CuO photocathodes using a protective CuBi2O4 layer

Author:

Lam Nguyen Hoang,Truong Nguyen Tam Nguyen,Le Nam,Ahn Kwang-Soon,Jo Younjung,Kim Chang-Duk,Jung Jae Hak

Abstract

AbstractA heterojunction photocathode of CuO and CuBi2O4 grown on an FTO substrate (FTO/CuO/CuBi2O4) was synthesized using hydrothermal method followed by spin coating and annealing to overcome the bottlenecks encountered by CuO in photoelectrochemical (PEC) water splitting application. The synthesis methods, morphological, structural properties, and composition of each sample under each synthesis condition are discussed in detail. The photocathode with 15 coating layers annealed at 450 °C exhibited the best PEC performance. Moreover, its current density reached 1.23 mA/cm2 under an applied voltage of − 0.6 V versus Ag/AgCl in a neutral electrolyte. Additionally, it exhibited higher stability than the bare CuO thin film. The bonding of CuBi2O4 on CuO resulted in close contact between the two semiconductors, helping the semiconductors support each other to increase the PEC efficiency of the photocathode. CuO acted as the electron-generating layer, and the CuBi2O4 layer helped minimize photocorrosion as well as transport the carriers to the electrode/electrolyte interface to accomplish the hydrogen evolution reaction.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRK) funded by the Ministry Education

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3