The Effect of Wall Thickness and Scanning Speed on the Martensitic Transformation and Tensile Properties of Selective Laser Melted NiTi Thin-Wall Structures

Author:

Guo FangminORCID,Guo Yanbao,Kong Xiangguang,Xiong Zhiwei,Hao Shijie

Abstract

In this study, we analyzed the coupling effect of laser scanning speed and wall thickness on the phase transformation behavior and tensile properties of selective laser melted NiTi thin-wall structures. It is demonstrated that either scanning speed or wall thickness has their respective influence rule, whereas this influence could be changed when coupling them together; that is, under different scanning speeds, the effect of wall thickness could be different. It is found that the deviation of phase transformation temperature among different wall thicknesses is ~3.7 °C at 400 mm/s, while this deviation increases to ~23.5 °C at 600 mm/s. However, the deviation of phase transformation peak width among different wall thicknesses shows little change under different scanning speeds. At low scanning speed, the samples with thicker wall thickness exhibit better tensile ductility than thinner, whereas they all show poor tensile properties and brittle behavior at high scanning speed. This uncertain influence rule is mainly due to the interaction effect between different thermal histories generated by wall thickness and scanning speed.

Funder

joint fund of the National Natural Science Foundation Committee of China Academy of Engineering Physics

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3