Application of Machine Learning in Forecasting the Impact of Mining Deformation: A Case Study of Underground Copper Mines in Poland

Author:

Cieślik KonradORCID,Milczarek WojciechORCID

Abstract

Open access to SAR data from the Sentinel 1 missions allows analyses of long-term ground surface changes. The current data-acquisition frequency of 12 days facilitates the continuous monitoring of phenomena such as volcanic and tectonic activity or mining-related deformations. SAR data are increasingly also used as input data in forecasting phenomena on the basis of machine learning. This article presents the possibility of using selected machine learning algorithms in forecasting the influence of underground mining activity on the ground surface. The study was performed for a mining protective area with a surface of over 500 km2 and located in western Poland. The ground surface displacements were calculated for the period from November 2014 to July 2021, with the use of the Small Baseline Subset (SBAS) method. The forecasts were performed for a total of 22 identified subsidence troughs. Each of the troughs was provided with two profiles, with a total of more than 10,000 identified points. The selected algorithms served to prepare 180-day displacement forecasts. The best results (significantly better than the baseline) were obtained with the ARIMA and Holt models. Linear models also provided better results than the baseline and their performance was very good at up to 2 months forecasting. Tree-based models including their sophisticated ensemble versions: bagging (Random Forest, Extra Trees) and boosting (XGBoost, LightGBM, CatBoost, Gradient Boosting, Hist Gradient Boosting) cannot be used for this type of predictions since Decision Trees are not able to extrapolate and thus are not a valid stand-alone tool for forecasting in this type of problems. A combination of satellite remote sensing data and machine learning facilitated both the simultaneous quasi-permanent monitoring of ground surface displacements and their forecasting in a relatively long time period.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3