Integrating SBAS-InSAR and AT-LSTM for Time-Series Analysis and Prediction Method of Ground Subsidence in Mining Areas

Author:

Liu Yahong1,Zhang Jin1

Affiliation:

1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Ground subsidence is a significant safety concern in mining regions, making large-scale subsidence forecasting vital for mine site environmental management. This study proposes a deep learning-based prediction approach to address the challenges posed by the existing prediction methods, such as complicated model parameters or large data requirements. Small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technology was utilized to collect spatiotemporal ground subsidence data at the Pingshuo mining area from 2019 to 2022, which was then analyzed using the long-short term memory (LSTM) neural network algorithm. Additionally, an attention mechanism was introduced to incorporate temporal dependencies and improve prediction accuracy, leading to the development of the AT-LSTM model. The results demonstrate that the Pingshuo mine area had subsidence rates ranging from −205.89 to −59.70 mm/yr from 2019 to 2022, with subsidence areas mainly located around Jinggong-1 (JG-1) and the three open-pit mines, strongly linked to mining activities, and the subsidence range continuously expanding. The spatial distribution of the AT-LSTM prediction results is basically consistent with the real situation, and the correlation coefficient is more than 0.97. Compared with the LSTM, the AT-LSTM method better captured the fluctuation changes of the time series for fitting, while the model was more sensitive to the mining method of the mine, and had different expressiveness in open-pit and shaft mines. Furthermore, in comparison to existing time-series forecasting methods, the AT-LSTM is effective and practical.

Funder

the Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference65 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3