A Review of Marine Gravity Field Recovery from Satellite Altimetry

Author:

Li Zhen,Guo JinyunORCID,Ji BingORCID,Wan Xiaoyun,Zhang ShengjunORCID

Abstract

Marine gravity field recovery relies heavily on satellite altimetry. Thanks to the evolution of altimetry missions and the improvements in altimeter data processing methods, the marine gravity field model has been prominently enhanced in accuracy and resolution. However, high-accuracy and high-resolution gravity field recovery from satellite altimeter data remains particularly challenging. We provide an overview of advances in satellite altimetry for marine gravity field recovery, focusing on the impact factors and available models of altimetric gravity field construction. Firstly, the evolution of altimetry missions and the contribution to gravity field recovery are reviewed, from the existing altimetry missions to the future altimetry missions. Secondly, because the methods of altimeter data processing are of great significance when obtaining high-quality sea surface height observations, these improved methods are summarized and analyzed, especially for coastal altimetry. In addition, the problems to be resolved in altimeter data processing are highlighted. Thirdly, the characteristics of gravity recovery methods are analyzed, including the inverse Stokes formula, the inverse Vening Meinesz formula, Laplace’s equation, and least squares collocation. Furthermore, the latest global marine gravity field models are introduced, including the use of altimeter data and processing methods. The performance of the available global gravity field model is also evaluated by shipboard gravity measurements. The root mean square of difference between the available global marine gravity model and shipboard gravity from the National Centers for Environmental Information is approximately 5.10 mGal in the low-middle latitude regions, which is better than the result in high-latitude regions. In coastal areas, the accuracy of models still needs to be further improved, particularly within 40 km from the coastline. Meanwhile, the SDUST2021GRA model derived from the Shandong University of Science and Technology team also exhibited an exciting performance. Finally, the future challenges for marine gravity field recovery from satellite altimetry are discussed.

Funder

National Natural Science Foundation of China

Autonomous and Controllable Special Project for China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3