The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: contribution of ICESat-2 laser altimetry

Author:

Li Zhen,Guo JinyunORCID,Zhu Chengcheng,Liu Xin,Hwang Cheinway,Lebedev SergeyORCID,Chang Xiaotao,Soloviev Anatoly,Sun Heping

Abstract

Abstract. The global marine gravity anomaly model is predominantly recovered from along-track radar altimeter data. Despite significant advances in gravity anomaly recovery, the improvement of the gravity anomaly model remains constrained by the absence of cross-track geoid gradients and the reduction in radar altimeter data, especially in coastal and high-latitude regions. ICESat-2 laser altimetry, with a three-pair laser beam configuration, a small footprint, and a near-polar orbit, facilitates the determination of cross-track geoid gradients and provides valid observations in certain regions. We present an ICESat-2 altimeter data processing strategy that includes the determination of cross-track geoid gradients and the combination of along-track and cross-track geoid gradients. Utilizing these methods, we developed a new global marine gravity model, SDUST2022GRA, from radar and laser altimeter data. Different weight determination methods were applied to each type of altimeter datum. The precision and spatial resolution of SDUST2022GRA were assessed against published altimeter-derived global gravity anomaly models (DTU17, V32.1, NSOAS22) and shipborne gravity measurements. SDUST2022GRA achieved a global precision of 4.43 mGal, representing an improvement of approximately 0.22 mGal over existing altimeter-derived models. In local coastal and high-latitude regions, SDUST2022GRA showed an enhancement of 0.16–0.24 mGal compared to the other models. The spatial resolution of SDUST2022GRA is approximately 20 km in certain regions, which is slightly superior to the other models. The percentage contribution of ICESat-2 to the improvement of the gravity anomaly model is 4.3 % in low- to mid-latitude regions by comparing SDUST2022GRA with ICESat-2 to SDUST2021GRA without ICESat-2, and this is increasing in coastal regions. These assessments suggest that SDUST2022GRA is a reliable global marine gravity anomaly model. The SDUST2022GRA data are freely available at https://doi.org/10.5281/zenodo.8337387 (Li et al., 2023).

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3