Abstract
The emission of greenhouse gases, especially CO2, is the main factor causing global warming. Due to incomplete statistical data on energy consumption at and below the urban scale of Beijing-Tianjin-Hebei (BTH), in this study, Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) and Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) data were combined, and a neural network model and weighted average method based on DN (Digital Number) value were used to obtain CO2 emissions at the municipal and county scales with a resolution of 1 km × 1 km from 2000–2019. Next, a spatial-temporal analysis model and spatial econometric model were used to study the CO2 emissions at different scales of BTH. This study also solved the problem that STIRPAT analysis cannot be carried out due to insufficient urban statistical CO2 emissions data. The results show that the energy CO2 emissions in BTH present a distribution pattern of “East greater than West”, with a trend of first rising and then slowing down. Moreover, the rapid growth areas are mainly located in Chengde and Tianjin. The degree of regional spatial aggregation decreased year by year from 2000–2019. Population, affluence and technology factors were positively correlated with CO2 emissions in Tianjin and Hebei. For Beijing, in addition to foreign investment, factors such as urbanization rate, energy intensity, construction and transportation factors all contributed to the increase in CO2 emissions. Among them, the growth of population is the main reason for the increase of CO2 at the urban scale in BTH. Finally, based on the research results and the specific situation of the cities, corresponding policies and measures are proposed for the future low-carbon development of the cities.
Funder
National Natural Science Foundation of China
Natural Resources Science and Technology Project of Sichuan Province
Subject
General Earth and Planetary Sciences
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献