Biomass Calculations of Individual Trees Based on Unmanned Aerial Vehicle Multispectral Imagery and Laser Scanning Combined with Terrestrial Laser Scanning in Complex Stands

Author:

Lian XugangORCID,Zhang Hailang,Xiao WuORCID,Lei Yunping,Ge Linlin,Qin Kai,He Yuanwen,Dong Quanyi,Li Longfei,Han Yu,Fan Haodi,Li Yu,Shi Lifan,Chang Jiang

Abstract

Biomass is important in monitoring global carbon storage and the carbon cycle, which quickly and accurately estimates forest biomass. Precision forestry and forest modeling place high requirements on obtaining the individual parameters of various tree species in complex stands, and studies have included both the overall stand and individual trees. Most of the existing literature focuses on calculating the individual tree species’ biomass in a single stand, and there is little research on calculating the individual tree biomass in complex stands. This paper calculates the individual tree biomass of various tree species in complex stands by combining multispectral and light detection and ranging (LIDAR) data. The main research steps are as follows. First, tree species are classified through multispectral data combined with field investigations. Second, multispectral classification data are combined with LIDAR point cloud data to classify point cloud tree species. Finally, the divided point cloud tree species are used to compare the diameter at breast height (DBH) and height of each tree species to calculate the individual tree biomass and classify the overall stand and individual measurements. The results show that under suitable conditions, it is feasible to identify tree species through multispectral classification and calculate the individual tree biomass of each species in conjunction with point-cloud data. The overall accuracy of identifying tree species in multispectral classification is 52%. Comparing the DBH of the classified tree species after terrestrial laser scanning (TLS) and unmanned aerial vehicle laser scanning (UAV-LS) to give UAV-LS+TLS, the concordance correlation coefficient (CCC) is 0.87 and the root-mean-square error (RMSE) is 10.45. The CCC and RMSE are 0.92 and 1.41 compared with the tree height after UAV-LS and UAV-LS+TLS.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3