Can Transfer Entropy Infer Information Flow in Neuronal Circuits for Cognitive Processing?

Author:

Tehrani-Saleh AliORCID,Adami ChristophORCID

Abstract

How cognitive neural systems process information is largely unknown, in part because of how difficult it is to accurately follow the flow of information from sensors via neurons to actuators. Measuring the flow of information is different from measuring correlations between firing neurons, for which several measures are available, foremost among them the Shannon information, which is an undirected measure. Several information-theoretic notions of “directed information” have been used to successfully detect the flow of information in some systems, in particular in the neuroscience community. However, recent work has shown that directed information measures such as transfer entropy can sometimes inadequately estimate information flow, or even fail to identify manifest directed influences, especially if neurons contribute in a cryptographic manner to influence the effector neuron. Because it is unclear how often such cryptic influences emerge in cognitive systems, the usefulness of transfer entropy measures to reconstruct information flow is unknown. Here, we test how often cryptographic logic emerges in an evolutionary process that generates artificial neural circuits for two fundamental cognitive tasks (motion detection and sound localization). Besides counting the frequency of problematic logic gates, we also test whether transfer entropy applied to an activity time-series recorded from behaving digital brains can infer information flow, compared to a ground-truth model of direct influence constructed from connectivity and circuit logic. Our results suggest that transfer entropy will sometimes fail to infer directed information when it exists, and sometimes suggest a causal connection when there is none. However, the extent of incorrect inference strongly depends on the cognitive task considered. These results emphasize the importance of understanding the fundamental logic processes that contribute to information flow in cognitive processing, and quantifying their relevance in any given nervous system.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3