Neuroevolution gives rise to more focused information transfer compared to backpropagation in recurrent neural networks

Author:

Hintze ArendORCID,Adami Christoph

Abstract

AbstractArtificial neural networks (ANNs) are one of the most promising tools in the quest to develop general artificial intelligence. Their design was inspired by how neurons in natural brains connect and process, the only other substrate to harbor intelligence. Compared to biological brains that are sparsely connected and that form sparsely distributed representations, ANNs instead process information by connecting all nodes of one layer to all nodes of the next. In addition, modern ANNs are trained with backpropagation, while their natural counterparts have been optimized by natural evolution over eons. We study whether the training method influences how information propagates through the brain by measuring the transfer entropy, that is, the information that is transferred from one group of neurons to another. We find that while the distribution of connection weights in optimized networks is largely unaffected by the training method, neuroevolution leads to networks in which information transfer is significantly more focused on small groups of neurons (compared to those trained by backpropagation) while also being more robust to perturbations of the weights. We conclude that the specific attributes of a training method (local vs. global) can significantly affect how information is processed and relayed through the brain, even when the overall performance is similar.

Funder

Beacon Center for the Study of Evolution in Action

National Aeronautics and Space Administration

Uppsala Multidisciplinary Center for Advanced Computational Science

Dalarna University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference55 articles.

1. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

2. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biol 52:99–115

3. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

4. Bengio Y, LeCun Y (2007) Scaling learning algorithms towards AI. In: Bottou L, Chapelle O, DeCoste D, Weston J (eds) Large scale kernel machines. MIT Press, Cambridge

5. Jo J, Bengio Y (2018) Measuring the tendency of CNNs to learn surface stastistical regularities. arXiv:1711.11561

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3