Robustness of Sparsely Distributed Representations to Adversarial Attacks in Deep Neural Networks

Author:

Sardar Nida1,Khan Sundas1,Hintze Arend12ORCID,Mehra Priyanka1ORCID

Affiliation:

1. Department for MicroData Analytics, Dalarna University, 791 88 Falun, Sweden

2. BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA

Abstract

Deep learning models have achieved an impressive performance in a variety of tasks, but they often suffer from overfitting and are vulnerable to adversarial attacks. Previous research has shown that dropout regularization is an effective technique that can improve model generalization and robustness. In this study, we investigate the impact of dropout regularization on the ability of neural networks to withstand adversarial attacks, as well as the degree of “functional smearing” between individual neurons in the network. Functional smearing in this context describes the phenomenon that a neuron or hidden state is involved in multiple functions at the same time. Our findings confirm that dropout regularization can enhance a network’s resistance to adversarial attacks, and this effect is only observable within a specific range of dropout probabilities. Furthermore, our study reveals that dropout regularization significantly increases the distribution of functional smearing across a wide range of dropout rates. However, it is the fraction of networks with lower levels of functional smearing that exhibit greater resilience against adversarial attacks. This suggests that, even though dropout improves robustness to fooling, one should instead try to decrease functional smearing.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3