Glycocalyx Preservation and NO Production in Fatty Livers—The Protective Role of High Molecular Polyethylene Glycol in Cold Ischemia Injury

Author:

Lopez Alexandre,Panisello-Rosello Arnau,Castro-Benitez CarlosORCID,Adam René

Abstract

Improving the protection of marginal liver grafts during static cold storage is a major hurdle to increase the donor pool of organs. The endothelium glycocalyx quality of preservation influences future inflammatory and oxidative responses. One cellular pathway responsible for the formation of nitric oxide by endothelial cells is dependent on the stimulation of proteoglycans present in the glycocalyx. We investigated the impact of the glycocalyx preservation in static cold storage of fatty liver preserved in different preservation solutions on the endothelium-mediated production of NO. Zucker fatty rat livers were preserved 24 h in static cold storage in either Institut Georges Lopez-1 (IGL-1) (n = 10), IGL-0 (i.e., without PEG35) (n = 5) or Histidine-Tryptophan-Ketoglutarate (HTK) (n = 10) preservation solutions before being processed for analysis. For Sham group (n = 5), the fatty livers were immediately analyzed after procurement. The level of transaminases and nitrites/nitrates were measured in the washing perfusate. Glycocalyx proteins expressions, Syndecan-1, glypican-1 and heparan sulfate (HS), were determined in the tissue (ELISA). Steatotic livers preserved 24 h in IGL-1 preservation solution have a significant lower level of transaminases (aspartate aminotransferase (AST), alanine aminotransferase (ALT)) and less histological damages than steatotic livers preserved 24 h with HTK (p = 0.0152). The syndecan-1 is significantly better preserved in IGL-1 group compared to HTK (p < 0.0001) and we observed the same tendency compared to IGL-0. No significant differences were observed with glypican-1. HS expression in HTK group was significantly higher compared to the three other groups. HS level in IGL-1 was even lower than IGL-0 (p = 0.0005) which was similar to Sham group. The better protection of the glycocalyx proteins in IGL-1 group was correlated with a higher production of NO than HTK (p = 0.0055) or IGL-0 (p = 0.0433). IGL-1 protective mechanisms through the formation of NO could be due to its better protective effects on the glycocalyx during SCS compared to other preservation solutions. This beneficial effect could involve the preservation state of syndecan-1 and the internalization of HS.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference38 articles.

1. TIME-DEPENDENT IMPAIRMENT OF MITOCHONDRIAL FUNCTION AFTER STORAGE AND TRANSPLANTATION OF RABBIT KIDNEYS1

2. Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers

3. Nitric Oxide: Physiology, Pathophysiology, and Pharmacology;Moncada;Pharmacol. Rev.,1991

4. Nitric oxide: what’s new to NO?

5. Expression of iNOS in early injury in a rat model of small-for-size liver transplantation;Jiang;Hepatobiliary Pancreat. Dis. Int.,2009

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3