Nitric oxide: what’s new to NO?

Author:

Ghimire Kedar1,Altmann Helene M.1,Straub Adam C.12,Isenberg Jeffrey S.123

Affiliation:

1. Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania;

2. Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and

3. Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

Abstract

Nitric oxide (NO) is one of the critical components of the vasculature, regulating key signaling pathways in health. In macrovessels, NO functions to suppress cell inflammation as well as adhesion. In this way, it inhibits thrombosis and promotes blood flow. It also functions to limit vessel constriction and vessel wall remodeling. In microvessels and particularly capillaries, NO, along with growth factors, is important in promoting new vessel formation, a process termed angiogenesis. With age and cardiovascular disease, animal and human studies confirm that NO is dysregulated at multiple levels including decreased production, decreased tissue half-life, and decreased potency. NO has also been implicated in diseases that are related to neurotransmission and cancer although it is likely that these processes involve NO at higher concentrations and from nonvascular cell sources. Conversely, NO and drugs that directly or indirectly increase NO signaling have found clinical applications in both age-related diseases and in younger individuals. This focused review considers recently reported advances being made in the field of NO signaling regulation at several levels including enzymatic production, receptor function, interacting partners, localization of signaling, matrix-cellular and cell-to-cell cross talk, as well as the possible impact these newly described mechanisms have on health and disease.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3