Do Chemical-Based Bonding Techniques Affect the Bond Strength Stability to Cubic Zirconia?

Author:

Comba AllegraORCID,Baldi Andrea,Tempesta Riccardo Michelotto,Carossa MassimoORCID,Perrone Letizia,Saratti Carlo Massimo,Rocca Giovanni Tommaso,Femiano Rossella,Femiano FeliceORCID,Scotti NicolaORCID

Abstract

This study evaluated the effectiveness of chemical-based adhesive techniques on promoting immediate and aged bond strength between zirconia and luting cement. A total of 128 discs of zirconia were divided into 4 groups (n = 32) according to the adhesive treatment: tribochemical silica-coating followed by silane (Silane Primer, Kerr) and bonding (Optibond FL, Kerr), Signum Zirconia Bond (Hereaus), Z-Prime Plus (Bisco), and All-Bond Universal (Bisco). Composite cylinders were cemented on the zirconia sample with Duo-Link Universal (Bisco). Eight specimens per group were subjected to 10,000 thermocycles and subsequently bond strength was tested with shear-bond strength test. ANOVA test showed that artificial aging significantly affected the bond strength to zirconia. Bonferroni test highlighted a significant influence of adhesive treatment (Signum) on bond strength after thermocycling. It was concluded that 10-MDP-based bonding systems showed no improvement in initial bond strength compared with tribochemical treatment. All chemical bonding techniques tested in this study were influenced by thermocycling.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3