“Agree to Disagree”: Forecasting Stock Market Implied Volatility Using Financial Report Tone Disagreement Analysis

Author:

Magner Nicolas S.1,Hardy Nicolás1,Ferreira Tiago2,Lavin Jaime F.3ORCID

Affiliation:

1. Facultad de Administración y Economía, Universidad Diego Portales, Santiago 8370191, Chile

2. Facultad de Economía y Negocios, Universidad Alberto Hurtado, Santiago 6500620, Chile

3. Escuela de Negocios, Universidad Adolfo Ibáñez, Santiago 7941169, Chile

Abstract

This paper studies the predictability of implied volatility indices of stocks using financial reports tone disagreement from U.S. firms. For this purpose, we build a novel measure of tone disagreement based on financial report tone synchronization of U.S. corporations scattered across five Fama-French industries. The research uses tree network methods to calculate the minimum spanning tree length utilizing data from text mining sentiments features extracted from all U.S. firms that considers 837,342 financial reports. The results show that periods of increased disagreement predict higher implied volatility indices. We contribute to the literature that proposes that a high level of expectations dispersion leads to higher stock volatility and fills a gap in understanding how firms’ disagreement level of financial report tone forecast the aggregate stock market behavior. The findings also have implications for financial stability and delegated portfolio management, as accurate volatility prediction is critical for practitioners.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference67 articles.

1. Disagreement and the Stock Market;Hong;J. Econ. Perspect.,2007

2. Mental Accounting, Loss Aversion, and Individual Stock Returns;Barberis;J. Financ.,2001

3. A Model of Investor Sentiment;Barberis;J. Financ.,1998

4. Investor Psychology and Security Market Under-and Overreactions;Daniel;J. Financ.,1998

5. Investor Psychology and Asset Pricing;Hirshleifer;J. Financ.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3